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We present and discuss the results of a numerical investigation on the susceptivity for third-harmonic generation
in mixed valent ruthenium-pyrazine chains (which we may call “Creutz-Taube chains”), whose skeleton is
made by ruthenium ions bridged by pyrazine ligands. These compounds are described by a two-band Hubbard
Hamiltonian, which, according to our previous results, is capable of reproducing the main features of the
optical spectra in the near-IR-vis as a function of the total charge of the ion (i.e., the number of Ru2+ and
Ru3+ ions). The third-harmonic susceptivity, computed exactly through a linear algebraic method (avoiding
the sum over states) is remarkably high, suggesting that these compounds may be good candidates for nonlinear
optics and photonics.

I. Introduction

The study of nonlinear optical properties of molecules and
materials is recognized as a field of high scientific and
technological interest. We briefly remind here the exciting
possibilities offered by photonics in the field of signal-processing
and computing. For example, a factor of 1000 is predicted for
the improvement in the rate of telecommunications.1,2 The
atomic and molecular physics also has benefited (and will further
benefit) of the availability of high-frequency laser beams
generated by a third-harmonic process. Much research work
in this field is addressed toward the design and realization of
organic materials,2-4 which should offer some advantages on
the classical inorganic crystals, especially in two respects: better
processability and quicker response time. The scientific com-
munity is also very active in the investigation of inorganic
semiconductors, where the nonlinear properties may be enhanced
by creation of quantum-confined nanostructures.5-6

The role of theory in this field may be important, if it will
reveal capable of furnishing not only computational tools, but
also simple interpretative models which may serve as a guide
when designing new materials or ameliorating the existing ones,
for example by introducing suitable substituents (tailoring). The
most interesting development in this respect is the interpretation
of nonlinear properties of a molecules in terms of a set of
anharmonic oscillators,7 of electronic origin. The idea is old,
and may be considered as a generalization of the Lorentz idea.8

Very recently it has been popularized by Mukamel and
co-workers,9-11 who connected it to the time-dependent Har-
tree-Fock approach (RPA). In these papers the oscillators are
identified by analyzing the time-dependent one-particle density
matrix. The above methodology, unfortunately, seems to be
not applicable to strongly correlated electron systems, being
founded on the hypothesis that the system can be described by
a single (time-dependent) Slater determinant at all times. In
studying these systems one must resort to new methods.
In this paper we examine a class of such compounds, i.e.,

the mixed valent chains of ruthenium ions bridged by pyrazine
units (Figure 1), whose prototype is the well-known Creutz-
Taube ion.12 Some of these compounds have been prepared
and studied several years ago, as far as the optical absorption
spectra are concerned.13 Recently, we proposed a simple model
for these compounds, which revealed very useful in reproducing

and interpreting the change of the near-IR-vis optical properties
when the total charge of the ion is varied.14-17 Here we study
the same compounds from the point of view of nonlinear optical
properties. The plan of the paper is the following: in the next
section we briefly review the main optical properties of such
compounds and the model proposed for their study; in section
II we present the method we have adopted for the computation
of nonlinear optical properties, which may be considered a linear
algebraic version of the inhomogeneous differential equation
method, proposed several years ago by Dalgarno and Lewis,18

for computing the action of the resolvent operator on a given
state, avoiding the sum-over-states representation; in Section
III we present and discuss some numerical results for our chain
compounds, while the meaning of the work is resumed in a
few concluding remarks.

II. Creutz-Taube Chains

The Creutz-Taube ion is a well-known mixed-valence system
built by two ruthenium ions, each one coordinated to five
ammonia molecule, with a pyrazine molecule bridging the two
Ru(NH3)5 moieties. The interesting optical properties of such
compound depends on the back-bonding from the ruthenium
ion to theπ* orbital of the pyrazine. Due to distorted symmetry,
the electron transfer processes may be simply modeled by just
taking one orbital per center: a dxz orbital on each ruthenium
and the LUMO (π*) on the pyrazine (taking the Ru-Ru axis
asx and the axis perpendicular to the pyrazine plane asz). The
Ru3+ has a d5 configuration, and hence, it has one electron in
the dxz orbitals, which is pushed toward higher energy by the
distorted octahedral field.19 The species Ru(III)-Ru(III), Ru-
(III)-Ru(II) and Ru(II)-Ru(II) have then two, three, and four
electrons, respectively. In previous studies we have shown that
the spectral behavior of all the above species, as well as their
longer analogues, is remarkably well reproduced by the two-X Abstract published inAdVance ACS Abstracts,November 15, 1997.

Figure 1. Ru-pyz chains.
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band Hubbard Hamiltonian:

where

The following values of the parameters will be considered,
which have been optimized to reproduce the absorption spectra
of the Creutz-Taube ion and its monovalent analogues:t )
-0.73,U ) 4.62, and∆ ) Epyz - ERu ) 5.06 (all in eV).
According to our interpretation, the peculiar properties of such

compounds depend on the fact that, despite the large bandgap
∆, the hopping from a doubly occupied Ru orbital to the
pyrazine is easy, owing to the strong electron-electron repulsion
on the ruthenium sites (U). The near-infrared intervalence
transition in the mixed valent Ru(III)-Ru(II) complex is
attributed to a transition from the symmetric ground state to an
antisymmetric excited state, without appreciable variation in the
charge distribution.
The same model Hamiltonian of eq 1 rationalizes the behavior

of the longer chain analogues of the Creutz-Taube ion, first
synthesized and studied by Von Kameke, Tom and Taube13 (up
to 5 ruthenium ions bridged by four pyrazine units). The
number of electrons in the system can be easily changed by
adding an oxidant and the corresponding absorption spectra are
found to vary.13 The most impressive feature of these spectra
is that, as one begins to remove electrons from the fully reduced
species (i.e., that with all Ru(II)), a transfer of spectral weight
from higher to lower frequencies is observed. This persists until
the number of Ru(III) and Ru(II) is balanced15,16(the computed
spectra are reported in the section III, when discussing nonlinear
optical behavior). This situation is reminiscent of what observed
in high Tc copper-oxide superconductors, when doping with
holes.20,21

According to our model, the above behavior may be
interpreted as a pronounced increase in the electron mobility,
when one has an almost alternance between Ru(III) and Ru(II)
along the chain. The ground state of the system exhibits then
strong charge fluctuations between Ru and pyrazine sites.15

Again, the reason may be found in the fact that the U term
almost compensates the energy gap between the dxzorbital and
the LUMO of the bridging ligand. The presence of an
absorption band at low frequency (below 0.5 eV), not reported
in the experimental results of ref 13, for chains with 5 ruthenium
ions and the overall tendency toward lower frequencies by
increasing the dimensions of the system strongly support the
idea that longer chains (if they can be prepared) may behave as
small-gap semiconductors or even metals. In this paper,
however, we focus on the nonlinear optical properties of chains,
as can be exactly computed within our Hubbard model of eq 1.

III. Linear Algebraic Method for the Computation of
Linear and Nonlinear Optical Properties

When a molecule is placed in an external e.m. field it may
give rise to a number of processes involving photon absorption
and emission. If we do not investigate on processes induced
by very short pulses, it is convenient to work in a time-
independent formalism, taking into account the radiation Hamil-

tonian as well as the molecule-field interaction in the second
quantization formalism. Neglecting the spatial dependence of
the field in the spirit of the dipole approximation, as well as
magnetic interactions, the full Hamiltonian is then written as

wherek is the wave vector of the photon,λ its polarization,µ
is the molecular dipole, andE the electric field (which can be
written in terms of photon creation-annihilation operators).
As is well-known, the probability of a given process,

identified by the initial and final state (both including photons)
can then be evaluated from the matrix element of the scattering
operatorT:22,23

whereFf is the density of final states for the process.
Processes involving a given number of photon absorption-

emission can be extracted from eq 3 through the expansion22,23

where

Our interest in this paper is for coherent harmonic generation
processes, in which a certain number of photons is absorbed
from the initially populated radiation mode and spontaneously
emitted in an empty mode with double, triple, ... frequency.
Due to the vector nature of both molecular dipole and electric

field, the matrix elements ofT for n-harmonic generation can
be formally written as an+ 1 tensor contraction of two distinct
tensor factors, one for the molecule (the susceptivity) and the
other for photons.22 In the present case the transition dipole
matrix elements are all aligned along thex-axis (the Ru-Ru
axis) and we can then simplify our notation, focusing on the
molecular part.
The various susceptivities may be written in the usual form

of a sum over states by introducing in eq 4 the spectral
representation of the unperturbed resolvent operator. The
susceptivity involved in the second-harmonic generation is then
the following sum of three terms, corresponding to the diagrams
a-c in Figure 2:

In eq 5∆gj ) Eg - Ej etc. According to the usual rules the
line widthγ of excited states is taken positive for virtual steps.24

The numerical factor 1/2 is introduced here for homogeneity
with the Orr-Ward result25 (see also ref 4). For the chains
discussed in section IIø2 is identically zero since the molecule
is centrosymmetric.

Hmol ) ERu(n1 + n3 + ...+ nN) + Epyz(n2 + n4 + ...nN-1) +

t∑
σ

[(a1,σ
+ a2,σ + a2,σ

+ a3,σ + ...+ aN-1,σ
+ aN,σ) + h.c.] +

U(n1vn1V + n3vn3V + ...+ nNvnNV) (1)

nj ) njv + njV

H ) Hmol + Hrad+ V

Hrad) ∑
k,λ

ωkbk
+(λ)bk(λ)

V) -µE (2)

Pfri ) |〈f|T|i〉|2Ff (3)

T) V+ VG0V+ VG0VG0V+ ...

G0 ) 1
Ef - Hmol - Hrad

(4)

ø2(-2ω;ω,ω) )
1

2
∑
j,k [ 〈g|µ|k〉〈k|µ|j〉〈j|µ|g〉

(∆gk + 2ω + iγk)(∆gj + ω + iγj)
+

〈g|µ|k〉〈k|µ|j〉〈j|µ|g〉

(∆gk - ω - iγk)(∆gj + ω + iγj)
+

〈g|µ|k〉〈k|µ|j〉〈j|µ|g〉

(∆gk - ω - iγk)(∆gj - 2ω - iγj)] (5)
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The susceptivity involved in the third-harmonic generation
is the following sum of four terms, corresponding to the
diagrams a-d in Figure 3:

The numerical factor 1/4 is introduced here for the same
reasons mentioned in the case of second-harmonic generation.
We also notice that absorption processes may be treated

within the same formalism, utilizing the optical theorem.26 The
absorption cross section is related to the imaginary part of the
amplitude for the elastic processes (initial and final states
identical for both molecule and photons). Using the expansion
of T one may distinguish between single-photon,A1(ω), two-
photon,A2(ω), ..., absorption spectra:

The sum-over-states representation of susceptivity tensors has
the advantage of showing explicitly the contributions coming
from the various electronic states but, in principle, is amenable
to numerical calculation only if a good representation of the
whole set of excited states is at hand. Despite this intrinsic
limitations the sum-over-states method has been extensively
used.2,4 We have successfully tested a different approach, which
is basically an algebraic version of the one proposed by Dalgarno
and Lewis18 and used successfully for computing multiphoton
amplitudes.23 A very similar method has been applied by Soos
and Ramasesha27 to the study of nonlinear properties of
conjugated system by their diagrammatic valence bond theory.

For illustrating the method let us first consider the resonant
polarizability term:

where

Here, for simplicity, we have taken the same damping factor
for all the excited states. The ground state is obtained by a
Lanczos approach (see ref 14-16 for more details) and we can
also easily generate the doorway state|d〉, eq 9, since the dipole
operator is diagonal in our localized (valence bond) basis set.17

The computational problems arise for computing the vector|a〉,
eq 9, since in order to evaluateG0 one has to invert a large
matrix. The problem can be overcome rewriting eq 9 in the
form:

and|a〉 can be found solving an inhomogeneous system of linear
equations, whose dimension is that of the basis set. We notice
that if, as in the Dalgarno-Lewis method,H0 is a differential
operator instead of a matrix, one is lead to an inhomogeneus
differential equation.12,23 The doorway state|d〉 is real, but we
take it as complex for generality (in fact, as we will see, for the
calculation of higher order polarizabilities one has to solve an
eq like (10) in which both|a〉 and |d〉 have to be replaced by
new complex vectors having a different meaning):

We solve the above linear system by an iterative method
searching, for each frequencyω, the minimum of the function
(N is the dimension of the basis set):

wherexj is the jth component of the vector|x〉 along the basis
set, etc. The point at which the function f reaches its minimum
value gives the required vector|a〉. As is well-known, since
the above is a quadratic function, one could trivially find the
minimum by solving a linear system involving the gradient
vector and the Hessian matrix.27 The direct approach, however,
cannot be pursued whenN is very large, since it requires the
inversion of the Hessian matrix. One is then forced to
minimization methods that utilize only the gradient vector. We
have tested the conjugate gradient method by Fletcher and
Reeves28 and have found that it works very well. In the
Appendix we give the explicit form of the gradient vector, which
is the basic ingredient of the method. Here we simply remind
that iterative methods work speedily on large systems if the
vector produced by acting withH0 on |a〉 is easily generated,
without having to store the wholeH0 matrix. This is our case,
due to the sparse nature of the matrix representation of the model
Hamiltonian in eq 1.
It is also clear that the method can be easily generalized to

higher order susceptivity. This can be done in two distinct
ways: (1) by a sequential procedure; (2) by a single step
procedure. Let us illustrate this for the first term,ø3(1), of the

Figure 2. Three Feynmann diagrams for the processes contributing
to second-harmonic generation. On the left side of the thick vertical
line are the absorptions of photonsω, on the right the emission of a
photon 2ω.

ø3(-3ω;ω,ω,ω) )
1

4
∑
j,k,l

[ 〈g|µ|l〉〈l|µ|k〉〈k|µ|j〉〈j|µ|g〉

(∆gl + 3ω + iγl)(∆lk + 2ω + iγk)(∆gj + ω + iγj)
+

〈g|µ|l〉〈l|µ|k〉〈k|µ|j〉〈j|µ|g〉

(∆gl - ω - iγl)(∆lk + 2ω + iγk)(∆gj + ω + iγj)
+

〈g|µ|l〉〈l|µ|k〉〈k|µ|j〉〈j|µ|g〉

(∆gl - ω - iγl)(∆lk - 2ω - iγk)(∆gj + ω + iγj)
+

〈g|µ|l〉〈l|µ|k〉〈k|µ|j〉〈j|µ|g〉

(∆gl - ω - iγl)(∆lk - 2ω - iγk)(∆gj - 3ω - iγj)] (6)

A1(ω) ∝ - Im∑
j

|〈g|µ|j〉|2

∆gj + ω + iγj

(7a)

A2(ω) ∝

- Im∑
j,k,l

〈g|µ|l〉〈l|µ|k〉〈k|µ|j〉〈j|µ|g〉

(∆gl + ω + iγl)(∆gk + 2ω + iγk)(∆gj + ω + iγj)
(7b)

ø1
+(ω) ) 〈d|a〉 (8)

|d〉 ) µ|g〉

|a〉 ) G0(Eg + ω + iγ)|d〉 (9)

|d〉 ) (Eg + ω - H0 + iγ)|a〉 (10)

|a〉 ) |x〉 + i|γ〉

|d〉 ) |u〉 + i|w〉 (11)

f(x1, x2, ...,xn, y1, y2, ...,yn) )

∑
j

{[(Eg + ω - H0)xj - uj]
2 + (γyj - wj)

2} (12)
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susceptivity tensor involved in second harmonic generation, eq
2. (1) One starts from|d〉 to determine|a〉 as illustrated
previously for the polarizability;|d′〉 ) µ|a〉 is then easily
generated. The vector|d′〉 is used to determine

by the same iterative method. Finally,

(2) After defining |a′〉 ) F|d〉 with

one can directly go to the linear system

since the dipole operator is diagonal and can be easily inverted.
We have used the first route for our calculation of third harmonic
generation in Creutz-Taube chains, since it offers the advantage
that the intermediate results can be also used to compute two-
photon absorption spectra.

IV. Numerical Results and Discussion

We have computed the third-harmonic susceptivity tensor for
chains involving 7 and 9 sites, i.e., four ruthenium ions bridged

by three pyrazine molecules and five ruthenium ions bridged
by four pyrazine molecules, respectively. As far as the oxidation
state is concerned, we have selected two cases in which the
transfer of spectral weight to low frequency is higher. As
previously mentioned this happens when the number of ruthe-
nium ions with oxidation state+3 and+2 is identical, when
possible (for seven sites). For nine sites we have taken three
Ru3+ ions and two Ru2+ ions (we remember that, due to the
strong electron delocalization in such complexes, the assignment
of +2 and+3 charges is arbitrary and has been introduced just
for counting electrons). Since our model, as previously
mentioned, takes into account only electrons involved in the
back-bonding from the dzx atomic orbital on each Ru atom to
theπ* molecular orbital of each pyrazine molecule (LUMO),
we have included in the calculation six electrons (for seven sites)
and seven electrons (nine sites). The number of Slater
determinants in our computation (selecting those with the
minimum totalSz) is then 1225 (for the seven sites, six electrons
case) and 10 584 (nine sites and seven electrons).

In Figure 4 we show, for the seven sites, six electrons chain,
as a function of (in the range 0-1 eV): (a) the real and
imaginary part ofø3(-3ω;ω,ω,ω), (b) its absolute value. The
damping termγ, the same for all the excited states, has been
taken to be 0.1 eV. To elucidate the contributions coming from
intermediate resonant steps due to states which can be reached
by absorption of one, two or three photons, we reported on the
same figure the single-photon, and the two-photon absorption

Figure 3. Four Feynmann diagrams for the processes contributing to third-harmonic generation. On the left side of the thick vertical line are the
absorptions of photonsω, on the right the emission of a photon 3ω.

Figure 4. Various computational results obtained for the seven sites, six electrons chain: (a) real and the imaginary part ofø3(-3ω;ω,ω,ω); (b)
absolute value ofø3; (c) one-photon absorption rate as a function ofω (continuous line) and ofω/3 (broken line) (see text); (d) two-photon
absorption rate. For the absorption rate curves we simply report the value of the sums in eqs 7a and 7b. To obtain the rate in number of transitions
per atomic unit of time, the ordinates in Figure 3c have to be multiplied by the factor 2πd2p(F/2)2, whereF is the energy density in au (number of
photons times photon energy divided by quantization volume),d is the distance between sites (in au) andp ) 27.2114 is the au-eV conversion
factor. The ordinates in Figure 3d have to be multiplied by 2πd3p(F/2).4 In computing parts a and b of Figure 3, we have assumedd ) 2 Å.

|a′〉 ) G0(Eg + 2ω + iγ)|d′〉

ø2
(1)(-2ω;ω,ω) ) 〈d|µ|a′〉

F ) G0(Eg + 2ω + iγ)µG0(Eg + ω + iγ)|d〉

F-1|a′〉 ) (Eg + 2ω + iγ)µ-1(Eg + ω + iγ)|a′〉 ) |d〉
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spectrum (Figure 4c and 4d, respectively). We have not
computed the three-photon absorption spectrum. Some infor-
mation on the effect of the three-photon resonances may be
extracted looking at the one-photon absorption spectrum as a
function ofω/3 (dashed line in Figure 4c), due to the fact that
the states that can be reached by one- and three-photon
absorption are the same. Similar information can be extracted
from the real and the imaginary part ofø3(-3ω;ω,ω,ω), reported
in Figure 4a. The parametric (nonresonant) generation is larger
for values of at which the real part ofø3(-3ω;ω,ω,ω) dominates.
Figure 5 has the same content of Figure 4, but refers to the

nine sites, seven electrons chain.
The first remark suggested from a perusal of Figures 4 and

5 is that the computed susceptivity values are very high, as one
may realize comparing them with the known experimental
values for various materials.3,4,10 For example, the polyacetylene
has values ofø3(-3ω;ω,ω,ω) of the same order of magnitude
of those of the seven sites, six electrons Creutz-Taube chain
(Figure 4), while in the nine sites, seven electrons chainø3
(Figure 5) further increases by a factor of about 2. The high
values obtained depend on the large transition moments involved
(along the chain axis), permitted by the peculiar electronic
structure of such compounds, as it results from our calculations.
The latter, is deeply influenced by the strong correlation effects
on the metallic sites, and by the fact that all the Ru-pyz
distances along the chain have been assumed identical, in
contrast with the strong bond alternation present in polyenes.
Our assumption is supported by the experimental observation
that the Ru-pyz distance is almost the same for Ru(II) and
Ru(III) complexes29,30 but need to be confirmed by direct
experimental observation in the chains (we were not able to
find experimental data in the literature).
Comparing part b with parts c and d of Figure 4 (seven sites,

six electrons), one may assign the two peaks in the absolute
value of the third-order susceptivity (Figure 4b) to the resonant
absorption of one photon (right peak) and three photons (left
peak). The two-photon absorption spectrum has a single peak
at a frequency value very close to that for the single photon
absorption, reflecting the fact that the two-photon absorption is
also enhanced by the one-photon resonance. As a consequence,
is not easy to extract a definite conclusion on the role of two-
photon resonance(s).
The behavior in Figure 5 (nine sites, seven electrons) is

similar. Here, the peak at about 0.3 eV (Figure 5b) is almost
coincident with a one-photon resonance (Figure 5c) and a peak

in the two-photon absorption spectrum (Figure 5c). Once again,
is not clear if there is a specific role of two-photon resonances.
The peak at low frequency may be related to a three-photon
resonance.
Direct information on the role of resonant and nonresonant

processes may be obtained from Figures 4a and 5a, showing
the real and imaginary part of the third-order susceptivity for
third harmonic generation. The frequency ranges at which the
real part of ø3 dominates are those at which one expects
parametric amplification.
As a general remark, we notice that according to our

computations, the contributions coming from diagrams involving
virtual steps, parts b-d of Figure 3, are also very important
and cannot be neglected.

V. Conclusions

Our work shows that the third-harmonic generation process
seems to proceed with high probability in the mixed valence
Creutz-Taube chains, i.e., ruthenium ions bridged by pyrazine
ligands (the coordination environment is saturated by ammonia
molecules to give an almost octahedral geometry) studied several
years ago by Von Kameke et al.13 This is not unexpected for
us, since previous calculations with the same Hubbard model
Hamiltonian used here (but slightly different parameters) showed
remarkable static charge fluctuations along the chain, in the
ground state.15 What we find here is that these oscillations are
dynamically amplified by the e.m. field and they exhibit a strong
nonlinear behavior. The computed microscopicø3 for the chain
with seven sites (four Ru atoms and three pyz bridges) and six
electrons has the same order of magnitude of that in polyacety-
lene, while moving to the nine sites, seven electrons chain it
further increases by a factor of about 2. We have presented
here some preliminary results obtained by a numerical method
avoiding the sum-over-states bottleneck in the spirit of the
Dalgarno-Lewis approach.18,23 The method shares many simi-
larities with that proposed by Soos and Ramasesha.27 We are
currently extending the calculations to cover different number
of electrons and chain lengths. We are also planning to
investigate the role of electron-phonon interaction on the
nonlinear optical behavior of such compounds. The analysis
of results will furnish new elements for a physical interpretation
of the nonlinear properties of such mixed-valent chains. We
will be very happy if, meanwhile, some experimental results
on these chains, hopefully stimulated by the present paper, will

Figure 5. Same as in Figure 3 for the nine sites, seven electrons chain.
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also appear to enrich the literature, which, to our knowledge, is
very scarce on this particular argument.

Appendix

We give here an explicit expression for the gradient of eq
12. This refers to the resonant term of the first polarizability,
but it may be easily generalizable to all the terms we need (in
general instead ofω we may have nω where n may be negative
andγ has to be taken negative in some cases, see eqs 5 and 6).
Let us first rewrite eq 12 making explicit the first term in the

sum on the right side:

The gradient (row) vector has then the following components
alongxi andyi, respectively:

where

Here, I is theN × N identity matrix and a right-side upper T
indicates the transpose.
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f(x1, x2, ...,xN, y1, y2, ...,yN) ) ∑
j

{[∑
k

((Eg + ω)δjk -

H0jk)xk -uj]
2 + (γyj - wj)

2}

(∇f)x ) p[(Eg + w)I - H0]

(∇f)y ) 2γ[γy- w]T

p) 2(r - ũ)[(Eg + ω)I - H0]

r ) {[(Eg + ω)I - H0]x}
T
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